Wednesday, January 15, 2025
News

Research: Identifies glycosylation enzyme critical in brain formation

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Washington | May 17, 2023 7:08:52 AM IST
In a research from the University of California, Irvine, scientists found that the MGAT5 glycosylation enzyme plays a significant role in brain development. This finding may lead to new therapeutic applications for neural stem cells.

The final mature cells that develop from neural stem cells in the brain and spinal cord are neurons, astrocytes, and oligodendrocytes. Each performs unique and important roles. Signals are sent by neurons, modified by astrocytes, and maintained against deterioration by oligodendrocytes. Small sugar molecules are frequently added when any cells produce proteins or fats that end up on the cell surface. The researchers investigated if the internal process of glycosylation had any impact on how neural stem cells differentiate into mature brain cells.

The study, published in the journal Stem Cell Reports, found that during glycosylation, the MGAT5 enzyme significantly regulates the formation of neurons and astrocytes from neural stem cells. Neural stem cells that don't have MGAT5 make more neurons and fewer astrocytes during the very early stages of brain development, altering its structure. These changes may contribute to later aberrant behaviour patterns, including abnormal social interactions and repetitive actions.

"Now that we know MGAT5 and glycosylation have a substantial impact on neuron and astrocyte formation, we have a better idea of how our nervous system develops," said corresponding author Lisa Flanagan, professor of neurology in UCI's School of Medicine. "We hope these findings will contribute to the use of neural stem cells for therapeutic purposes by providing new information about the factors regulating these cells."

It was known that neural stem cells respond to the external signals they encounter during development. But it was not known whether neural stem cells could modify their responses to those signals. The team analyzed the role of glycosylation enzymes in brain maturation by comparing control mice to those whose neural stem cells did not have the MGAT5 enzyme. It found that neural stem cells use glycosylation to manage their reactions to external signals and regulate the development of mature brain cells.

"As we continue our work, we hope to determine which cell surface proteins and pathways controlled by glycosylation are critical for neuron and astrocyte formation," Flanagan said. "This will give us better insight into the external signals significantly modified by neural stem cell glycosylation, which will, in turn, help to decode the complex processes that occur during brain development and expand the therapeutic use of neural stem cells." (ANI)

 
  LATEST COMMENTS (0)
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE HEALTH NEWS
Bioengineers found breakthrough in build...
Fibre in diet may boost the body against...
Research discovers new skeletal tissue w...
Revolutionizing Hip Replacement Surgery:...
Mrs. Neerja Birla Initiative Mpower Stre...
Gujarat health minister issues advisory ...
More...
 
INDIA WORLD ASIA
Delhi Court acquits husband, brother-in-...
Gorakhpur: CM Yogi holds 'Janta Darshan'...
PM Modi extends wishes on Army Day says ...
Srinagar Police takes cognizance of dero...
26 trains running late due to dense fog ...
'Deepest gratitude and homage to brave w...
More...    
 
 Top Stories
"Delhiites won't believe drama of C... 
EAM signs MoUs, meets Spanish Presi... 
"Strong Indian Navy in Indian Ocean... 
Quest Global Announces 13th Edition... 
Australian Open: Alcaraz advances t... 
Vega Equity Evolves to Xumane: Mult... 
India's infra-driven economy will l... 
"Strong Navy in Indian Ocean Region...