Wednesday, January 15, 2025
News

Stem cell population identified is vital for bone regeneration: Research

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Washington | January 3, 2023 10:31:15 PM IST
Researchers have identified a subpopulation of mesenchymal stem cells in the bone marrow that express the marker CD73. These cells have a higher potential for proliferation and differentiation, and play a significant role in bone healing, migrating to the site of a fracture and developing into cartilage and bone cells as part of the repair process. These cells have the potential for regenerative medicine.

MSCs are found in bone marrow, and are 'multipotent', meaning that they can both renew themselves and develop into a variety of specialized cell types, such as bone, fat, and cartilage cells. The researchers had previously developed a mouse line that uses green fluorescent protein to highlight cells expressing a particular molecule known as CD73. Studies of the bone marrow in this mouse revealed that a subpopulation of MSCs expressed CD73, as well as the sinusoidal endothelial cells (sECs) that are part of the vascular system of the bone marrow.

The CD73-positive MSCs could be seen to proliferate more than the CD73- negative MSCs, and to have a higher potential to differentiate into different cell types, indicating that this group of MSCs may be particularly effective for bone repair. The researchers therefore went on to study the functions of these CD73-positive MSCs in fracture healing.

As a fracture heals, it progresses through various stages. These include clotted blood forming at the fracture, which becomes replaced by a callus of fibrous tissues and cartilage, followed by formation of a hard bony callus. The bone is then remodeled, as regular bone replaces the hard callus and the bone returns to its usual shape.

"The generation of the callus is critically dependent on the recruitment of MSCs from the surrounding tissue and the bone marrow," said lead author Assistant Professor Kenichi Kimura, adding, "Therefore, fracture healing models are helpful for exploring the cellular dynamics of MSC migration and differentiation during tissue regeneration."

The team was able to observe the CD73-positive MSCs moving towards the site of the fracture and forming new cartilage and bone cells to heal the fracture. The CD73-positive sECs were also involved in the healing of the fracture, as they contributed to the process of 'neovascularisation', the formation of new blood vessels to support the healed bone.

Finally, they went on to graft CD73-positive MSCs into the area of a fracture, which markedly enhanced the healing process compared with when they grafted into CD73-negative MSCs.

Said Assistant Professor Kimura, "The identification of this subpopulation of MSCs could be of great benefit for regenerative medicine and the treatment of fractures." (ANI)

 
  LATEST COMMENTS ()
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE HEALTH NEWS
Bioengineers found breakthrough in build...
Fibre in diet may boost the body against...
Research discovers new skeletal tissue w...
Revolutionizing Hip Replacement Surgery:...
Mrs. Neerja Birla Initiative Mpower Stre...
Gujarat health minister issues advisory ...
More...
 
INDIA WORLD ASIA
'Maha Kumbh greatest event on planet': S...
Amit Shah to inaugurate several developm...
Delhi Court acquits husband, brother-in-...
'AAP, Congress complementary to each oth...
Ghaziabad: Police launch anti-encroachme...
Uttarakhand Governor Gurmit Singh, CM Dh...
More...    
 
 Top Stories
UP CM Yogi issues directives to acc... 
"Grave risks faced by individuals e... 
INS Vagsheer commissioned into Indi... 
Bangladesh will work with global pa... 
Global manufacturer of lithium-ion ... 
BJP releases star campaigner list f... 
Three Bangladeshi women staying ill... 
Another name for BJP is Guarantee o...