Tuesday, May 7, 2024
News

Research reveals brain connectivity is disrupted in schizophrenia

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Pennsylvania | October 18, 2023 9:46:13 PM IST
Schizophrenia, a neurodevelopmental illness characterised by psychosis, is hypothesised to result from disorganisation in brain connections and functional integration. A recent study published by Elsevier in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging finds changes in functional brain connectivity in patients with and without psychosis and schizophrenia, which may help researchers understand the neural basis of this disease.

The brain's cortex is organized in a hierarchical fashion, anchored by the sensorimotor cortex at one end and by multimodal association areas at the other, with the task of integrating incoming sensory information with internal and external sensory signals. The loss of executive control in schizophrenia may stem from disruption of this hierarchical signaling.

Alexander Holmes, a PhD candidate at Monash University who led the study, said, "We used brain imaging and novel mathematical techniques to investigate the hierarchical organization of the brains of individuals with early psychosis and established schizophrenia. This organization is important for brain health, as it regulates how we can effectively respond to and process stimuli from the external world."

The researchers used resting-state functional magnetic resonance imaging (fMRI) to measure gradients, an estimate of inter-regional functional coupling. Previous work had suggested that the primary sensory-fugal gradient was disrupted with schizophrenia, but the current study showed instead that secondary processing of the sensorimotor-visual gradient was affected in people with the disease.

Holmes added, "We found that the organizational pattern that differentiates visual and sensorimotor pathways is significantly impaired in individuals with schizophrenia but not in individuals with early psychosis. We then found that this impairment explains behavioral and clinical symptoms of schizophrenia. Our results highlight that changes in brain organization provide valuable insights into the mechanisms of schizophrenia, helping us better understand the disease and how it progresses."

Cameron Carter, MD, Editor of Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, said of the work, "These new approaches to test mathematical models of the organization of circuits in the human brain are beginning to reveal the nature of the disruption of neural integration that underlies psychotic symptoms in people with schizophrenia. Targeting these changes offers a new approach to how we think about developing treatments for this often difficult to treat illness." (ANI)

 
  LATEST COMMENTS (0)
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE SCIENCE NEWS
Study reveals how children with hyperten...
Study finds how birdwatching helps stude...
Study finds how dietary changes can trea...
Use of acid reflux drugs linked to highe...
Study reveals positive effect of midazol...
Study finds how liver inflammation assoc...
More...
 
INDIA WORLD ASIA
'Despite scorching heat, voting trends a...
Lok Sabha polls 2024: Madhya Pradesh rec...
'This election is for the development of...
PM Modi casts his vote for third phase o...
Voting begins in four parliamentary cons...
'400 paar' is only being given to boost ...
More...    
 
 Top Stories
BD Launches the TB Guardianship Pro... 
TiE Smashup 2024: Nurturing Growth ... 
BharatRohan's Latest Round of USD 2... 
VGP Marine Kingdom Brings First-Eve... 
"Congress does not want Baba Saheb ... 
Former India cricketer picks Riyan ... 
Clinics on Cloud Invests USD 0.5 Mi... 
Unleashing Productivity Without Soc...