Monday, March 27, 2023
News

Study suggests how combination of drugs help to reduce lung tumors

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

La Jolla (California) | March 19, 2023 1:34:46 PM IST
Personalization of cancer treatments has long been a goal--finding the right drugs that work for a patient's specific tumour based on specific genetic and molecular patterns. Many of these targeted therapies are highly effective, but they are not available for all cancers, including NSCLCs with a LKB1 genetic mutation.

According to a new study led by Salk Institute Professor Reuben Shaw and former postdoctoral fellow Lillian Eichner, who is now an assistant professor at Northwestern University, FDA-approved trametinib and entinostat (which is currently in clinical trials) can be given together to produce fewer and smaller tumours in mice with LKB1-mutated NSCLC.

The findings were published in Science Advances on March 17, 2023.

"For non-small cell lung cancer cases with the LKB1 mutation, standard chemotherapy and immunotherapy treatments are not effective," said Shaw, senior and co-corresponding author of the study, and director of Salk's Cancer Center. "Our findings demonstrate there is a way to target these cases using drugs that are FDA-approved or already in clinical trials, so this work could easily be used for a clinical trial in humans."

Roughly 20 percent of all NSCLCs have the LKB1 genetic mutation, which means there are no effective targeted therapies currently on the market for patients with this cancer type. To create a therapy that could target the LKB1 mutation, the researchers turned to histone deacetylases (HDACs). HDACs are proteins associated with tumor growth and cancer metastasis, with characteristic overexpression in solid tumors. Several HDAC-inhibitor drugs are already FDA-approved (safe for human use) for specific forms of lymphoma, but data on their efficacy in solid tumors or whether tumors bearing specific genetic alterations may exhibit heightened therapeutic potential has been lacking.

Based on previous findings connecting the LKB1 gene to three other HDACs that all rely on HDAC3, the team started by conducting a genetic analysis of HDAC3 in mouse models of NSCLC, discovering an unexpectedly critical role for HDAC3 in multiple models. After establishing that HDAC3 was critical for the growth of the difficult-to-treat LKB1-mutant tumors, the researchers next examined whether pharmacologically blocking HDAC3 could give a similarly potent effect.

The team was curious about testing two drugs, entinostat (an HDAC inhibitor in clinical trials known to target HDAC1 and HDAC3) and FDA-approved trametinib (an inhibitor for a different class of enzymes related to cancer). Tumors often become quickly resistant to trametinib, but co-treatment with a drug that inhibits a protein downstream of HDAC3 helps reduce this resistance. Because that protein relies on HDAC3, the researchers believed that a drug that targets HDAC3--like entinostat--would help manage trametinib resistance, too.

After treating mice with LKB1-mutated lung cancer with variable treatment regimens for 42 days, the team found that mice given both entinostat and trametinib had 79 percent less tumor volume and 63 percent fewer tumors in their lungs than the untreated mice. Additionally, the team confirmed that entinostat was a viable treatment option in cases where a tumor was resistant to trametinib.

"We thought the whole HDAC enzyme class was directly linked to the cause of LKB1 mutant lung cancer. But we didn't know the specific role of HDAC3 in lung tumor growth," said first and co-corresponding author Eichner. "We've now shown that HDAC3 is essential in lung cancer, and that it is a druggable vulnerability in therapeutic resistance."

The findings may lead to clinical trials to test the new regimen in humans, since entinostat is already in clinical trials and trametinib is FDA-approved. Importantly, Shaw sees this discovery as transformative for cancers beyond NSCLC, with potential applications in lymphoma, melanoma, and pancreatic cancer.

"Our lab has committed years to this project, taking small and meaningful steps toward these findings," says Shaw, holder of the William R. Brody Chair. "This is truly a success story for how basic discovery science can lead to therapeutic solutions in the "My independent laboratory is fortunate to be part of the Lurie Cancer Center at the Feinberg School of Medicine at Northwestern University, which is very supportive of translational research. We hope that this environment will facilitate the initiation of a clinical trial based on these findings," said Eichner. (ANI)

 
  LATEST COMMENTS ()
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE SCIENCE NEWS
Study finds people with traumatic childh...
Researchers reveals how odours from othe...
Robotic tech enables control by human th...
Study shows artificial Intelligence can ...
Study finds how road noise linked with h...
Researchers reveal how visually impaired...
More...
 
INDIA WORLD ASIA
Crops over 3 lakh acres damaged in Andhr...
CoC stares at liquidation as IIHL and To...
Railway Minister conducts first trial ru...
Maha Congress protests in all districts ...
BSF arrests three persons, seizes 1,385 ...
BJP criticises Congress 'satyagraha' pro...
More...    
 
 Top Stories
Personally I was waiting for this m... 
China's Security Architecture raise... 
Prithviraj Sukumaran, Dulquer Salma... 
Afghanistan: 4.2 magnitude earthqua... 
Study finds people with traumatic c... 
US Shooting: 2 shot at Gurudwara in... 
Kerala: UDF, Congress organise marc... 
83 pc Asian SMEs say ESG is high pr...