Monday, June 5, 2023
News

Study finds ancestral variation guides future environmental adaptations

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Washington | January 28, 2023 12:01:55 AM IST
For wild creatures, the rate of environmental change presents significant difficulties. When exposed to a new environment individual plants and animals can potentially adjust their biology to better cope with new pressures they are exposed to - this is known as phenotypic plasticity.

Plasticity is likely to be important in the early stages of colonizing new places or when exposed to toxic substances in the environment. New research published in Nature Ecology & Evolution, shows that early plasticity can influence the ability to subsequently evolve genetic adaptations to conquer new habitats.

Sea campion, a coastal wildflower from the UK and Ireland has adapted to toxic, zinc-rich industrial-era mining waste which kills most other plant species. The zinc-tolerant plants have evolved from zinc-sensitive, coastal populations separately in different places, several times.

To understand the role of plasticity in rapid adaptation, a team of researchers led by Bangor University conducted experiments on sea campion.

As zinc tolerance has evolved several times, this gave the researchers the opportunity to investigate whether ancestral plasticity made it more likely that the same genes would be used by different populations that were exposed to the same environment.

By exposing the tolerant and sensitive plants to both benign and zinc-contaminated environments and measuring changes in the expression of genes in the plant's roots, the researchers were able to see how plasticity in the coastal ancestors has paved the way for adaptation to take place very quickly.

Dr Alex Papadopulos, senior lecturer at Bangor University explained: "Sea campion usually grow on cliffs and shingle beaches, but mining opened up a new niche for them that other plants weren't able to exploit. Our research has shown that some of the beneficial plasticity in the coastal plants has helped the mine plants to adapt so quickly."

Alex added, "Remarkably if a gene responds to the new environment in a beneficial way in the ancestral plants, it is much more likely that that gene will be reused in all of the lineages that are independently adapting to the new environment. Phenotypic plasticity may make it more likely that there would be the same evolutionary outcome if the tape of life were replayed. If we understand the plastic responses that species have to environmental change, we may be better equipped to predict the impacts of climate change on biodiversity." (ANI)

 
  LATEST COMMENTS ()
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE SCIENCE NEWS
Google removes malicious Chrome extensio...
Microsoft adds new phone photos feature ...
IIT-Mandi researchers tap new energy sou...
WhatsApp to bring iPad support as compan...
Android 13 available on 15% of active de...
Artifact's new feature to let AI rewrite...
More...
 
INDIA WORLD ASIA
Odisha govt to run free bus service to K...
IndiGo flight carrying Union Minister ma...
Passenger detained for creating ruckus i...
Lucknow University to set up 'Bharat Lab...
NIA probes HuT terror module in Bhopal...
Brij Bhushan to address party rally on J...
More...    
 
 Top Stories
Marketing tech firm ZoomInfo to lay... 
Married men less prone to workplace... 
Russia to keep missile launch notif... 
Dua Lipa slams UK Government's 'sma... 
'One more to come, one more to go',... 
Separate state demand picks up amon... 
Taylor Swift rallies against Anti-L... 
Fire reported at Delhi's Maulana Az...