Saturday, April 27, 2024
News

Study reveals regulatory mechanisms for enzyme production in filamentous fungus

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Osaka | January 10, 2023 7:02:51 PM IST
In addition to being a longtime ally of sake brewers, filamentous fungi may soon become a supporter of environmentalists. Researchers from Osaka Metropolitan University have identified the processes that control the development of enzymes in a filamentous fungus, enabling the efficient breakdown of plant biomass as an alternative energy source to petroleum.

Filamentous fungi (moulds) are microorganisms with a long history of use in the fermentation of sake, soy sauce, cheese, and many other products. Such fermentation is a good example of the industrial use of filamentous fungi's ability to secrete various enzymes in large quantities. Currently, plant biomass is attracting attention as an alternative to petroleum, which will eventually be depleted. Since hard plant cell walls are composed of various aromatics and polysaccharides, their degradation requires a large number of enzymes with diverse characteristics. Consequently, studies have been conducted to utilize filamentous fungi as a prominent source of enzymes for plant biomass degradation.

Delving into this field, a research team led by Associate Professor Shuji Tani, from the Graduate School of Agriculture at Osaka Metropolitan University, analyzed the regulatory mechanisms of carbohydrate-hydrolyzing enzyme production in the filamentous fungus Aspergillus aculeatus, which produces enzymes that have an excellent ability to degrade plant biomass.

Uridine diphosphate (UDP)-glucose 4-epimerase (Uge5) is well known as an enzyme involved in galactose metabolism. However, the team discovered that Uge5 also regulates the expression of degrading enzyme genes in A. aculeatus. This is the very first report of Uge5's roles in selective gene expression in response to different types of inducing sugars in filamentous fungi.

These findings address the current technology challenge in establishing a much-wanted comprehensive high production method for various enzymes in filamentous fungi.

Professor Tani explained, "We constructed and screened a library containing approximately 9,000 gene-disrupted strains of Aspergillus aculeatus, and identified Uge5 as a novel regulatory factor that regulates the production of carbohydrate-hydrolyzing enzymes. The discovery of this new function took us by surprise. We plan to continue our research to elucidate phenomena that existing knowledge cannot explain." (ANI)

 
  LATEST COMMENTS (0)
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE SCIENCE NEWS
Use of acid reflux drugs linked to highe...
Study reveals positive effect of midazol...
Study finds how liver inflammation assoc...
Study reveals novel therapeutic target f...
Study finds common complication of atria...
Researchers discover how complexities in...
More...
 
INDIA WORLD ASIA
'PM Modi has done a lot for Buddhism': B...
Peaceful polling in Tripura East witness...
Land sinks in J-K: About 30 houses damag...
Firing outside Salman's residence: Mumba...
'People of minority communities angry, u...
Earthquake of 3.2 magnitude hits J-K's K...
More...    
 
 Top Stories
Pakistan: Imran Khan rejects possib... 
Indian Defence Ministry's Goa Shipy... 
Peaceful polling in Tripura East wi... 
China seeks to "influence and argua... 
Land sinks in J-K: About 30 houses ... 
Firing outside Salman's residence: ... 
NDTV clocks 59 pc growth in revenue... 
King Charles III to shortly return ...