Friday, April 19, 2024
News

Researchers develop optical computing for AI addressing noise problem

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Washington | January 24, 2022 6:20:17 PM IST
A research team has developed new optical computing hardware for AI and machine learning that is faster and much more energy-efficient while addressing the 'noise' inherent to optical computing that can interfere with computing precision.

The study has been published in the 'Science Advances Journal'.

The team demonstrated an optical computing system for AI and machine learning that not only mitigates the noise but actually uses some of it as input to help enhance the creative output of the artificial neural network within the system.

"We've built an optical computer that is faster than a conventional digital computer," said lead author Changming Wu, a UW doctoral student in electrical and computer engineering.

"And also, this optical computer can create new things based on random inputs generated from the optical noise that most researchers tried to evade," Wu added.

Optical computing noise essentially comes from stray light particles, or photons, that originate from the operation of lasers within the device and background thermal radiation. To target noise, the researchers connected their optical computing core to a special type of machine learning network, called a Generative Adversarial Network.

The team tested several noise mitigation techniques, which included using some of the noise generated by the optical computing core to serve as random inputs for the GAN.

For example, the team assigned the GAN the task of learning how to handwrite the number "7" like a person would. The optical computer could not simply print out the number according to a prescribed font.

It had to learn the task much like a child would, by looking at visual samples of handwriting and practicing until it could write the number correctly. Of course the optical computer didn't have a human hand for writing, so its form of "handwriting" was to generate digital images that had a style similar to the samples it had studied, but were not identical to them.

"Instead of training the network to read handwritten numbers, we trained the network to learn to write numbers, mimicking visual samples of handwriting that it was trained on," said senior author Mo Li, a UW professor of electrical and computer engineering.

"We, with the help of our computer science collaborators at Duke University, also showed that the GAN can mitigate the negative impact of the optical computing hardware noises by using a training algorithm that is robust to errors and noises. More than that, the network actually uses the noises as random input that is needed to generate output instances," Li added.

After learning from handwritten samples of the number seven, which were from a standard AI-training image set, the GAN practiced writing "7" until it could do it successfully. Along the way, it developed its own distinct writing style and could write numbers from one to 10 in computer simulations.

The next steps include building this device at a larger scale using current semiconductor manufacturing technology. So, instead of constructing the next version of the device in a lab, the team plans to use an industrial semiconductor foundry to achieve wafer-scale technology.

A larger-scale device will further improve performance and allow the research team to do more complex tasks beyond handwriting generation such as creating artwork and even videos.

"This optical system represents a computer hardware architecture that can enhance the creativity of artificial neural networks used in AI and machine learning, but more importantly, it demonstrates the viability for this system at a large scale where noise and errors can be mitigated and even harnessed," Li said.

"AI applications are growing so fast that in the future, their energy consumption will be unsustainable. This technology has the potential to help reduce that energy consumption, making AI and machine learning environmentally sustainable -- and very fast, achieving higher performance overall," Li added.

Additional co-authors are Ruoming Peng, a UW doctoral student in electrical and computer engineering; Xiaoxuan Yang, a doctoral student at Duke University; Heshan Yu, a research associate at University of Maryland, College Park; Ichiro Takeuchi, a professor at University of Maryland, College Park; and Yiran Chen, a professor at Duke University. This research was funded by the Office of Naval Research, the National Science Foundation and the Army Research Office. Part of this work was conducted at the Washington Nanofabrication Facility at the UW. (ANI)

 
  LATEST COMMENTS ()
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE SCIENCE NEWS
Researchers discover how complexities in...
Study finds how adding chemotherapy to h...
Study finds common complication of atria...
Study finds biodiversity is key to bette...
Researchers discover brain region involv...
Study finds how childhood maltreatment c...
More...
 
INDIA WORLD ASIA
Lok Sabha polls: RSS Chief Mohan Bhagwat...
'Strong foundation of 'Viksit Bharat' wi...
'Pehle matdaan phir jalpaan...' Uttarakh...
Former Tamil Nadu Chief Minister O Panne...
'Rise above caste, religion and vote...'...
'I did my democratic duty to protect the...
More...    
 
 Top Stories
Lok Sabha polls: West Bengal sees 1... 
Lok Sabha election: Union Minister ... 
Good Public Participation in electi... 
LS Polls 2024: Rajnikanth casts his... 
"Chennai Central has lowest voter t... 
"Feels great": Tripura CM Saha cast... 
Decision to join Ferrari doesn't ne... 
"101 per cent sure about winning el...