Wednesday, April 24, 2024
News

Study finds how brain perceives indistinct familiar objects

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Tokyo | November 29, 2021 6:49:00 PM IST
Researchers from the National Institute for Physiological Sciences in Japan have found how our brain can perceive familiar objects even when they become indistinct.

The findings of the study were published in the journal 'Science Advances'.

The appearance of objects can often change. For example, in dim evenings or fog, the contrast of the objects decreases, making it difficult to distinguish them. However, after repeatedly encountering specific objects, the brain can identify them even if they become indistinct. The exact mechanism contributing to the perception of low-contrast familiar objects remains unknown.

In the primary visual cortex (V1), the area of the cerebral cortex dedicated to processing basic visual information, the visual responses have been considered to reflect directly the strength of external inputs. Thus, high-contrast visual stimuli elicit strong responses and vice versa.

In this study, Rie Kimura and Yumiko Yoshimura found that in rats, the number of V1 neurons preferentially responding to low-contrast stimuli increases after repeated experiences. In these neurons, low-contrast visual stimuli elicit stronger responses, and high-contrast stimuli elicit weaker responses.

These low contrast-preferring neurons show a more evident activity when rats correctly perceive a low-contrast familiar object. It was first reported in Science Advances that low-contrast preference in V1 is strengthened in an experience-dependent manner to represent low-contrast visual information well. This mechanism may contribute to the perception of familiar objects, even when they are indistinct.

"This flexible information representation may enable a consistent perception of familiar objects with any contrast," Kimura said.

"The flexibility of our brain makes our sensation effective, although you may not be aware of it. An artificial neural network model may reproduce the human sensation by incorporating not only high contrast-preferring neurons, generally considered until now, but also low contrast-preferring neurons, the main focus of this research," Kimura concluded. (ANI)

 
  LATEST COMMENTS (0)
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE SCIENCE NEWS
Study reveals novel therapeutic target f...
Study finds how liver inflammation assoc...
Study finds common complication of atria...
Researchers discover how complexities in...
Study finds how adding chemotherapy to h...
Study finds biodiversity is key to bette...
More...
 
INDIA WORLD ASIA
Delhi: 8 injured as wall of house collap...
DRDO develops lightest bulletproof jacke...
'Modi Ji's mental health has been distur...
MCD seeks EC's permission for Delhi mayo...
'One of the Gaddars...': Mamata claims B...
LS polls: Riding on development, welfare...
More...    
 
 Top Stories
US: Aircraft transporting fuel cras... 
Taiwan's attempt to restrict China ... 
ASI ends survey at Bhojshala comple... 
"I don't see any objection": Congre... 
UAE announces USD 50 million commit... 
US: Senate set to approve aid packa... 
Telangana: BJP leader Boora Narsaia... 
"Russian style of democracy": Shiv ...