Wednesday, October 16, 2019
News
  News Updated on Wednesday, October 16, 2019 9:09:21 PM
India Asia World Sports Business Sci-Tec Health Entertainment Bollywood Video Press Releases Features City News
 
NEWS HOME
SCIENCE

Can atoms stage 'riots' against uniformity?
Washington | November 18, 2008 3:35:06 PM IST
 
   COMMENTS   Print this Page   PRINT   SocialTwist Tell-a-Friend  
   
 


 

Struck by laser light, electrons of crystal atoms begin moving back and forth rhythmically, like nanoscale soldiers on drill.

But according to a new theory developed by Johns Hopkins researchers, these very atoms can rebel against uniformity. Their electrons will begin moving apart and then joining together repeatedly like lively swing partners on a dance floor.

Moreover, the researchers said, this atomic freestyle dancing can be controlled, paving the way for tiny computer components that emit less heat and new sensors to detect bio-hazards and medical conditions.

"By choosing particular atoms in the proper configuration and directing the right laser light at them, we could control the behaviour of these 'nano-dancers,'" said Alexander E. Kaplan, a professor in computer engineering at Johns Hopkins. "The essential thing is, these are completely designable atomic structures."

The next step for researchers in his lab is to conduct lab experiments in an effort to validate the theory and predictions advanced by Kaplan and Sergei N. Volkov.

Kaplan, an internationally renowned nonlinear optics expert who studies how matter interacts with strong light, said his and Volkov's "nano-riot" idea runs counter to a widely accepted concept.

For decades, Kaplan said, scientists have adhered to the Lorentz-Lorenz theory, which asserts that the atomic electrons in a crystal, exposed to a laser beam, will move back and forth in tandem in a uniform way under any conditions.

"But we've concluded that under certain circumstances, the nearest atoms will behave much differently," he said. "Their electrons will move violently apart and come back together again, staging a sort of 'nano-riot.'"

Computer makers, trying to produce ever smaller metallic or semiconductor components, have run into problems related to the excessive release of heat, said a Johns Hopkins press release.

However, the nanoscale switch envisioned by Kaplan would be a dielectric, meaning it would involve no exchange of free electrons in the structure. Because of this, the proposed components would generate far less heat.

If their theory is confirmed, the Johns Hopkins researchers foresee other applications for these nanoscale atomic systems.

The tiny lattices, they say, could be designed so that when a specific foreign bio-molecule enters a system, the atomic electron 'dancing' would stop.

Because of this characteristic, they said, the system could be designed to trigger an alarm signal whenever a bio-hazard or perhaps a cancer cell was detected.

These findings have been described in Physical Review Letters.

(447 Words)18111523NNNN (IANS)

 

Watch News Videos

 

 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
INDIA WORLD ASIA
Chhattisgarh's kosa silk to soon drape S...
Tourists to fill up safety bond at Dudhw...
Chenani-Nashri tunnel to be renamed afte...
WB govt should apologise: Mukul Roy on G...
Manipur: Suspected IED bomb found at hou...
Surjewala moves EC, says gangster's kin ...
More...    
 
 Top Stories
Making India Pixel-less not a wise ... 
K.Jo on 21 years of 'Kuch Kuch Hota... 
Iran urges Turkey to stop military ... 
The beauty of lamentations... 
Yashasvi Jaiswal becomes youngest t... 
Instagram to give users more contro... 
SC directs J&K to produce orders on... 
Freyr Energy to scale up solar oper...