Saturday, May 28, 2022
News

AI algorithms detect diabetic eye disease inconsistently

   SocialTwist Tell-a-Friend    Print this Page   COMMENT

Washington | January 6, 2021 11:42:56 AM IST
A new study looks at the effectiveness of seven artificial intelligence-based screening algorithms to diagnose diabetic retinopathy, the most common diabetic eye disease leading to vision loss.

In a paper in Diabetes Care, researchers compared the algorithms against the diagnostic expertise of retina specialists. Five companies produced the tested algorithms - two in the United States (Eyenuk, Retina-AI Health), one in China (Airdoc), one in Portugal (Retmarker), and one in France (OphtAI).

The researchers deployed the algorithm-based technologies on retinal images from nearly 24,000 veterans who sought diabetic retinopathy screening at the Veterans Affairs Puget Sound Health Care System and the Atlanta VA Health Care System from 2006 to 2018.

The researchers found that the algorithms don't perform as well as they claim. Many of these companies are reporting excellent results in clinical studies. But their performance in a real-world setting was unknown.

Researchers conducted a test in which the performance of each algorithm and the performance of the human screeners who work in the VA teleretinal screening system were all compared to the diagnoses that expert ophthalmologists gave when looking at the same images.

Three of the algorithms performed reasonably well when compared to the physicians' diagnoses and one did worse. But only one algorithm performed as well as the human screeners in the test.

"It's alarming that some of these algorithms are not performing consistently since they are being used somewhere in the world," said lead researcher Aaron Lee, assistant professor of ophthalmology at the University of Washington School of Medicine.

Differences in camera equipment and technique might be one explanation. Researchers said their trial shows how important it is for any practice that wants to use an AI screener to test it first and to follow the guidelines about how to properly obtain images of patients' eyes, because the algorithms are designed to work with a minimum quality of images.

The study also found that the algorithms' performance varied when analyzing images from patient populations in Seattle and Atlanta care settings. This was a surprising result and may indicate that the algorithms need to be trained with a wider variety of images.(ANI)

 
  LATEST COMMENTS (0)
POST YOUR COMMENT
Comments Not Available
 
POST YOUR COMMENT
 
 
TRENDING TOPICS
 
 
CITY NEWS
MORE CITIES
 
 
 
MORE HEALTH NEWS
New study challenges previous link betwe...
Protein supplements can aid in managemen...
Delhi reports 403 fresh Covid cases, 1 d...
Doctors question unavailability of basic...
Monkeypox may persist in body for 10 wee...
Covid can induce severe inflammatory bon...
More...
 
INDIA WORLD ASIA
Former Haryana CM Om Prakash Chautala ge...
Delhi court to pass order against ex-Har...
Sushil Modi calls Bengal govt's move to ...
Physical activity, healthy diet can help...
Sambhaji Raje withdraws nomination for R...
Uttarakhand to implement Uniform Civil C...
More...    
 
 Top Stories
We have team that can win the title... 
PTI's 'Haqiqi Azadi March' cost gov... 
Centre launches Indian Business Por... 
India-Bangladesh Mitali Express to ... 
Plea in Mathura court claims Hindu ... 
Former Punjab minister Vijay Singla... 
Tamil Nadu: Woman police officer he... 
Being exposed to new things makes p...